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It is well known that the widely used powerful geostrophic equations that single out the 
vertical component of the Earth’s rotation cease to be valid near the equator. Through 
a vorticity and an angular momentum analysis on the sphere, we show that if the flow 
varies on a horizontal scale L smaller than (where His  a vertical scale of motion 
and a the Earth’s radius), then equatorial dynamics must include the effect of the 
horizontal component of the Earth‘s rotation. In equatorial regions, where the 
horizontal plane aligns with the Earths rotation axis, latitudinal variations of 
planetary angular momentum over such scales become small and approach the 
magnitude of its radial variations proscribing, therefore, vertical displacements to be 
freed from rotational constraints. When the zonal flow is strong compared to the 
meridional one, we show that the zonal component of the vorticity equation becomes 
(252.V) u, = (g/p,,) (+ /a  a0). This equation, where 0 is latitude, expresses a balance 
between the buoyancy torque and the twisting of the full Earth’s vorticity by the zonal 
flow u,. This generalization of the mid-latitude thermal wind relation to the equatorial 
case shows that u1 may be obtained up to a constant by integrating the ‘observed’ 
density field along the Earth’s rotation axis and not along gravity as in common mid- 
latitude practice. The simplicity of this result valid in the finite-amplitude regime is not 
shared however by the other velocity components. 

Vorticity and momentum equations appropriate to low frequency and predomi- 
nantly zonal flows are given on the equatorial ,&plane. These equatorial results and 
the mid-latitude geostrophic approximation are shown to stem from an exact 
generalized relation that relates the variation of dynamic pressure along absolute 
vortex lines to the buoyancy field. The usual hydrostatic equation follows when the 
aspect ratio 6 = H/L is such that tan B / S  is much larger than one. Within a boundary- 
layer region of width (Ha)’lz and centred at the equator, the analysis shows that the 
usually neglected Coriolis terms associated with the horizontal component of the 
Earth’s rotation must be kept. 

Finally, some solutions of zonally homogeneous steady equatorial inertial jets are 
presented in which the Earth‘s vorticity is easily turned upside down by the shear flow 
and the correct angular momentum ‘Or2 cos2 (0) + u1 rcos (0) ’ contour lines close in the 
vertical-meridional plane. 

1. Introduction 
The balance between Coriolis forces and pressure gradients discovered at the 

beginning of the 19th century has now received enough experimental verification to 
become one of the foundations of present day Meteorology and Oceanography. More 
precisely the ‘so called’ geostrophic equilibrium happens when the component of the 
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Coriolis force in the horizontal plane is nearly balanced by the pressure gradient. If k 
denotes a unit vector parallel to gravity, it reads 

VP f k  x u = --, 
P 

wheref, the Coriolis parameter, is 2Q sin 0 (0 being the latitude). In this relationship, 
the projection of the Earth’s rotation vector D onto the local vertical is assumed to 
capture the dominant effects of rotation. When (1) is used with the hydrostatic 
relation : 

where r is the radial coordinate, the thermal wind equation can be derived: 

f - = g x - ,  au VP 
ar P 

(3) 

an expression which relates the shear of the horizontal velocity field in the radial 
direction to the horizontal gradient of density. Oceanographers, who lack direct 
pressure measurements, make considerable use of (3) to deduce the velocity field from 
the observed temperature and salinity fields up to an arbitrary function of horizontal 
position. This arbitrary function of position, the so-called reference level of ocean 
currents, may be determined using additional data and/or dynamics. Sverdrup (1947) 
noted that the equation for the divergence of the geostrophic flow derived from (1) 
could provide this missing constant of integration : 

cote aw 
-v-+- = 0. 

r ar (4) 

By integrating (4) from a deep level (where w is assumed to be zero) to the bottom 
of the upper Ekman layer where the vertical velocity is equal to the Ekman pumping, 
a relation, known since as the Sverdrup relation, is obtained which links the meridional 
transport of water to the wind stress curl. Furthermore, through an integration with 
respect to longitude, the zonal transport can be estimated up to an arbitrary constant 
that was fixed by Sverdrup to ensure no normal flow at the eastern side of an ocean 
basin. 

Presented as such, equations (lj(4) seem relatively ad hoc. They may be given a 
firmer foundation with the help of scale analysis. Assuming that the motion occurs 
with a well-defined horizontal scale L and vertical scale H ,  equations (1)-(3) appear to 
be consistent approximations of the hydrodynamic equations for situations of slow 
motions or, more precisely, small Rossby number U/fL, and small aspect ratio H / L .  
Indeed when the rotation is rapid and the flow contained in thin shells, vertical 
accelerations and vertical velocities are much smaller than their horizontal counterparts 
and horizontal accelerations are also much smaller than the Coriolis accelerations. The 
chain of arguments leading to this result appears in Phillips’ (1963) review. Phillips 
introduces, in fact, two classes of geostrophic motion: the first kind occurs when the 
horizontal scale is much smaller than the Earth’s radius, in which case the horizontal 
divergence of velocity is of the order of the Rossby number, an approximation that 
leads directly to the quasi-geostrophic set of equations, the pressure being identified 
with a stream function. The second relates to planetary motions for which the 
divergence of the geostrophic velocity becomes large: this is the situation to which 



Flows in a rotating spherical shell 235 

FIGURE 1.  Illustration of the geometry of the local spherical coordinate system (#, 0, r )  respectively 
(longitude, latitude, distance from the Earth’s centre). ( i j ,  k) are unit vectors in the east, north and 
local vertical directions which are associated to (1,2,3) in the text. 

equation (4) applies. The point examined in the present study is that all the relations 
(1)-(4) are appropriate approximations for mid-latitude flows and cease to be valid in 
the vicinity of the equator. Indeed the thermal wind relation (3) produces singular flows 
at the equator unless the density gradient vanishes there. If it vanishes, the relation 
loses any predictive power for inference of the velocity field. Similarly, relation (4) 
shows that the divergence of the geostrophic flow increases without limit at the equator 
and this is clearly not compatible with the usual small vertical velocities allowed in 
thin-shell geometries. As noted by Phillips ‘a consistent approximation procedure has 
not yet been developed for low latitudes’. That this equatorial singularity occurs is no 
surprise since, with the approximations made, the fluid is effectively not rotating at the 
equator. Geostrophy, if it does apply in this region, must relate to the true direction 
of the Earth’s rotation axis and not to its vertical projection, and Taylor columns, if 
present, must be aligned in that direction. It is the objective of this work to examine 
first under what conditions this generalized geostrophic equilibrium can occur for a 
fluid contained in a thin rapidly rotating spherical shell and second to propose realistic 
modifications of that equilibrium, valid for slow large-scale zonal flows in the 
ocean-atmosphere context. To do this, it is useful to look at the problem in terms of 
vorticity. 

Consider for instance, the thermal wind equation (3). As pointed out by Lighthill 
(1966) this relation is a vorticity equation that expresses a balance between the torque 
of the buoyancy forces and the twisting of the vertical component of the Earth’s 
vorticity by the vertical shear of the horizontal flow. This gives the clue that the search 
for low-latitude approximations may proceed in a fruitful way from a vorticity 
viewpoint. As it is the density that is observed in geophysical flows, this will have the 
advantage of freeing the approximation procedure from a priori assumptions about the 
pressure forces. The reader may think that the twisting of the meridional component 
of the Earth’s vorticity vector by horizontal shear flows may be the missing term at low 
latitudes to balance the buoyancy torques. However, as the subsequent analysis shows, 
care must be exercised because this term is small and many other terms may enter the 
approximated vorticity equations at the same level of smallness. 

The small parameter of the problem that will guide our ordering of terms is the 
global Rossby number 8 = U/2QL (with U and L referring to horizontal velocity and 
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horizontal lengthscale respectively), a choice that avoids any reference to a specific 
latitude range. Because the Earth spins rapidly (2Q = 1.45 rad s-’), e values of 
10 YO requires lengthscales in excess of 35 km and 700 km respectively for the ocean and 
atmosphere given respective flows speeds of 0.5 m s-’ and 10 m s-l. These horizontal 
scales are sufficiently small that an expansion of the variables in powers of E is thought 
to capture the essential dynamics of the energy-containing flows at larger scales in both 
fluids. A second fundamental ordering parameter is the aspect ratio 6 = H / L  of 
vertical over horizontal scales whose upper bound is respectively of order 0.1 gnd 0.01 
for the oceanic and atmospheric cases based on the depths of the ocean and 
troposphere and the above minimal horizontal scales for a 10 % value of e. No a priori 
ordering of these two parameters is imposed in this study because 8 and 6, although 
both small, are not widely different. Let us examine, however, for its own sake, the 
linear approximations, i.e. the case E very much smaller than 8. 

When the geopotential surfaces are assumed spherical and the gravity vector radial 
and of constant value (see Gill 1982) the steady linearized momentum equations are 

1 ap 
-2Qsin8u2+2Qcos8u3 = - 

po r cos 8%’ 

I ap 

Po a0 
2Qsin8u1 = ---, 

In (5 )  po  is a constant reference density and p its variable part, so that the Boussinesq 
approximation is made. The coordinate system is shown in figure 1. Latitude 8 is 
measured from the equatorial plane and longitude 4 from an appropriate meridian 
increasing eastwards. The unit vectors i, j ,  k are respectively oriented eastwards, 
northwards and upwards and indices 1, 2, 3 refer to components oriented in these 
respective directions. In this reference frame, the rotation vector 52 has components (0, 
Qcos 8, Q sin 8). If the pressure is eliminated by taking the curl of ( 5 ) ,  the vorticity 
equation is obtained : 

(25247)u, =---a> g aP 

g p  u3 = - 252 cos 8 
r 

(2O.V)u2- 
po r cos 8 ag, 

u2 = 0, 
252 cos 8 

(29.V)U3+ 

where the operator 252- V is 2Q((cos 8 / r )  (a/a8). . . +sin O(a/ar). . .). In the horizontal 
plane, the twisting of the full Earth’s rotation vector by the fluid velocities balances the 
buoyancy torques on the right in (6a) and (6b)  while the vertical vorticity equation (6c)  
is the appropriate generalization of (4) when the true Earth’s rotation axis is 
considered. One of the results of the study that follows is to show, in the geophysical 
context of the ocean-atmosphere system, that (5  b), (5c)  and (6a)  remain valid at finite 
amplitude in equatorial regions provided that the zonal component of the flow 
dominates the meridional one. Because this last assumption is realistic, (6 a) generalizes 
the thermal wind: zonal equatorialj7ows can be determined from a knowledge of the 
meridional density gradients. The other equations are strongly modified for finite values 
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of E and we show that the full zonal momentum equation must be considered in the 
low-frequency limit at low latitudes, a complexity that projects onto the meridional and 
vertical components of the vorticity equation. This makes it impossible to infer the 
meridional and vertical velocity from the density field in a simple manner. The 
discussion of this result revolves around the validity of the hydrostatic approximation 
and we show that the Coriolis acceleration terms associated with the horizontal 
component of the Earth’s rotation must be kept in an equatorial boundary layer of 
width 

The neglect of these terms, known in the literature as the ‘ traditional approximation’ 
is a subject of long history. Phillips (1966) proposed a set of equations appropriate for 
large-scale rotating flows and showed that a form of the angular momentum 

satisfying the conservation principle 

r = Or2 cos2(0) + u1 r cos (0) (7) 

was maintained without these Coriolis terms, provided the varying radius r in (7) was 
replaced by the constant mean value a of the Earth’s radius, i.e. the so-called shallow- 
water approximation. For set ( l j(2)’ approximates to Sla2 cos2 (0) without violating 
the conservation principle. For set (5)’ the radial variation of the planetary angular 
momentum has to be kept to retrieve the neglected Coriolis terms, and the correct r 
then is Qr2 cos2 (0). Veronis (1968) cautioned about indiscriminate use of the Phillips’ 
set of equations in equatorial regions. Indeed without making this traditional 
approximation, Stern (1963) had already found axisymmetric equatorial inertial modes 
of low frequency (of order 2S2(h/r)’’2 where h is the fluid thickness). These modes that 
resulted from a finite number of reflections of inertial waves between the inner and 
outer spherical shells (Bretherton 1964), were later confirmed by Israelis’s (1972) 
numerical calculations. The subject was taken up again by Miles (1974) was examined 
the singularities of the Laplace tidal equation at critical latitudes and introduced a 
novel formulation for the tidal problem that kept the usually neglected Coriolis terms 
and provided a uniformly valid approximation as 6 went to zero. The often-given 
argument that the traditional approximation is justified when the Brunt-Vaisala 
frequency is much larger than 2Q comes from a consideration of the dispersion relation 
for inertial-internal gravity plane waves and is obviously incorrect for motions of scale 
large enough to feel the spherical shape of the bounding surface. The complete problem 
of finding the modes of oscillation within spherical shells is notoriously difficult owing 
to the non-separability of the solutions and still open. 

In $2 the complete vorticity equations appropriate for a sphere in rotation are 
derived and scaled for the case of rapid rotation and thin shells. In $3, it is shown how 
a modified thermal wind equation may be used in low latitudes to determine zonal 
velocities from the meridional density gradients. The simplicity of this result does not 
apply in other directions. We give consistent sets of momentum and vorticity equations 
that govern the behaviour of low-frequency large-scale predominantly zonal flows on 
the equatorial ,&plane to leading orders in E ,  6. Both mid-latitude and low-latitude 
cases may be cast into a general framework suitable for improved determination of the 
low-frequency part of the circulation from density observations and simple criteria are 
proposed to qualify possible uses of the hydrostatic ‘traditional’ approximation in 94. 
Finally a class of solutions of low-frequency inertial equatorial jets is discussed in the 
$ 5 .  When E becomes of order 6, the horizontal relative vorticity associated with a zonal 
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jet becomes comparable with the Earth’s vorticity and near the equator the direction 
of the absolute vorticity vector can easily depart from the direction of the Earth’s 
rotation axis. Indeed given realistic geophysical values for such equatorial jets, we 
show that the absolute vorticity and angular momentum contours form closed loops 
in the meridional vertical plane. The possibilities opened by this unique situation are 
briefly explored. We do not discuss specific applications in the present paper but we feel 
that some of our results are relevant to a variety of situations on rapidly rotating 
planets in the limit of small but finite aspect ratio and Rossby number. As the thickness 
of the fluid relative to the radius of the planet becomes larger, the equatorial dynamics 
emphasized here will appear over an increasing range of latitudes. 

2. The vorticity equation 
Although at the heart of many interpretations of the dynamics of atmospheric and 

oceanic flows, it appears that no discussion of the spherical vorticity equations in 
component form has appeared so far. Instead, considerable attention has been given 
to Ertel’s potential vorticity, a particular combination of vorticity and density, which 
is conserved following a fluid parcel in the absence of irreversible processes. The fluid 
is supposed to be incompressible, gravity is radial, and the Boussinesq approximation 
is made. This latter choice is more appropriate for the ocean than for the atmosphere 
but it is not necessary at this stage of the analysis to be exhaustive and appropriate 
modifications are straightforward. Under the above conditions the momentum 
eauations are 

Du VP P - + + a x  u = - -+ -g ,  
Dt Po Po 

v - u  = 0. (9 b) 
If the curl of (9a)  is taken, the vorticity equation in vectorial form becomes 

D 
Dt -((r+2Q) = ( r + 2 Q ) . v u + v p x g ,  

Po 

where 5 = V x u. This states that the absolute vorticity (c+ 2Q) of a fluid parcel is 
modified both by the stretching and twisting actions of the velocity field and by the 
action of the buoyancy torques. Equation (3)  is a particular subset of (10): it is what 
remains of the horizontal components of (10) when the relative vorticity vector is 
neglected and the operator 252- V is approximated by 252 sin 8 a/&. Although quite 
justified at mid-latitudes, these approximations become dubious when 8 becomes 
small. What is less obvious is that (4) is also what remains of the vertical component 
of (10) under the same two conditions. To improve upon these approximations and 
obtain expressions valid for the whole sphere, a scaling procedure is required and 
applied to each component of (10) in what follows. The forms of (10) in the zonal, 
meridional and vertical direction are respectively 

DE, 252cos8 -+ Dt r 
u2 = (4 + 2 0 )  * VU,. 
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The gradient operator that appears in (1 1) is 

and the vorticity components are related to velocity components as 

while the continuity equation is 

--p+-(u,cOs#) 1 a +-- 1 i3(u3r2) = 0. 
rcos# a$ i36 ) r2 ar 

Because the unit vectors are a function of position on the sphere, numerous metric 
terms appear in these equations. As will be shown, most of them are unimportant 
under the shallow-water approximation, a notable exception being the second term in 
the vertical vorticity equation (1 1 c). This is the familiar p-term ($ = 252 cos 8/r) that 
plays such a crucial role in the dynamics of slow motions on the Earth. 

To find out if the simplified equations (6) have any value and how they need to be 
modified under realistic conditions, the flow variables in the full equations (1 1) are 
scaled. Because the focus of the present work is on equatorial regions, the anisotropy 
of equatorial flows in introduced at the outset. To achieve this, two independent 
horizontal scales L,, L, in the meridional and zonal directions respectively are chosen 
and their ratio a( = L,/L,) is an additional parameter of the problem. Assuming that 
each term in the continuity equation and material derivative is possibly important, the 
scales of the velocities (ul, u,, u3) are chosen as (U,  aU, a6U) where 6, the aspect ratio, 
is H/L,, H being the relevant vertical lengthscale, which is usually different from the 
depth of the fluid. Similarly the scales of the vorticities are chosen as 
(Ua/H, U / H ,  U/L,). Finally the density scale po252L, U/gH is that appropriate for 
large-scale flows dominated by the Earths rotation. The new non-dimensional 
variables (primed) then become 
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Introducing these changes of variables into (1 1) produces the following non- 
dimensional equations (after dropping the primes) : 

€ ~ + € 6 ( y u , ~ , - ~ , u g ) - S ~ y c 0 s d u ,  D5 = (e<++*).Vu,+-- 1 aP 
Dt cos 0 a$ 
D t ,  €---+ycos 0 u2 = (€<+a*). vu,. 
Dt 

In these expressions the variations of Y have been neglected (to order 
consequence r has been replaced by its constant value a.  Furthermore, the variations 
of the angle e should in principle be scaled as (L,/a)O' but for economy this has not 
been introduced at this stage in the trigonometrical terms although a local expansion 
of (12) at a given latitude would require this. The scaled Earth's vorticity vector a* is 

so that the stretching-twisting operator that appears in (12) is 

Expression (12) shows that the various approximations of the full vorticity equation 
depend upon four independent parameters: the global Rossby number = U/252L,; 
the aspect ratio 6 = H/L,; the planetary ratio y = L,/a; the anisotropy ratio 

In scaling the angular momentum (7) as I" = I'/Qa2 with the above non- 
a = L,/L,. 

dimensional variables, one obtains 

EG r' = c0s2(0) + 287 cos2 (0) r' + 2 4 1  + Syr') cos (8) ul, 

(1) (11) (111) 

(1 3) 

where r has been scaled like a( 1 + Syr'). A term S2y2 cos2 (6)  r" of order (H/a)' has been 
neglected for consistency with the approximations in (12). Term (I) represents the main 
planetary term depending only on latitude and which leads to the traditional Coriolis 
term in the zonal momentum equation. Term (11) is the radially dependent angular 
momentum part leading to the vertical-velocity-related Coriolis term in the zonal 
momentum equation, while terms (111) are the relative contributions. 

Before turning to new expressions valid at low latitudes, some well-known mid- 
latitude results are recovered from (12), a derivation that is perhaps complementary to 
that obtained from a momentum perspective (see for instance Pedlosky 1987). 

(a)  Geostrophic motion of thefirst kind 
This is the situation described by the /?-plane approximation at mid-latitudes. The 

horizontal flow is isotropic and the motions remain of a scale small compared to the 
Earth's radius, so that 6 4 1, c 4 1, y 4 1,a N O(1). The trigonometrical terms can be 
expanded around a central latitude O0 in powers of y after expressing the dimensional 
angle 0 as 

e = 0, + y ~ .  
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To leading orders in 6, E ,  y, (12a) and (12b) reduce to the familiar thermal wind 
relations 

On the other hand, (12c) implies au3/ar = 0. In a formal expansion procedure in 
powers of E this means that the vertical velocity u3 is smaller than thought a priori and 
is in fact of order UeaS. When rescaling the vertical velocity that way, the vertical 
vorticity equation (12c) becomes to leading order 

an expression in which D / D t  reduces now to the horizontal advection operator. 
Because the divergence of the horizontal flow is of order E ,  a stream function can be 
introduced to express ul, uz and fl ,  in terms of that stream function. This is consistent 
with (14a,b) because the sine and cosine coefficients in these equations are now 
constant and evaluated at a central latitude 8,, from which the motions do not depart 
significantly (y 4 1). The equations (14) are then equivalent to the classical quasi- 
geostrophic equations on the Cartesian /3-plane tangent to the sphere at 8,. The 
consistent angular momentum f' then takes the form 

r = cos2 (8,) - 2 cos (8,) sin (8,) ye' - 2 cos2 (8,) y2 f12 + y2f12 + 2ey cos (8,) ul, 

where the cosine coefficients have been expanded up to the second order since r 
represents an integral of the zonal momentum equation. To infer zero- and first-order 
formulations, the velocities have to be expanded in E ,  i.e. u1 = U ~ ) + E U ~ )  and 
u2 = DB'/Dt = U ; ) + E U ~ ) .  The ratio of (111) and (IT) compares the relative angular 
momentum to the planetary one and is s l y  cos (0,) = U/(pL2), the familiar term that 
measures the relative importance of advection of relative vorticity against advection of 
planetary vorticity. 

(b)  Geostrophic motion of the second kind 
The only difference with the previous limit is that the motion occurs truly on a 

planetary scale so that y is now of order 1 and the trigonometrical terms cannot be 
approximated. When S 4 1, E 4 1, y - O(1), and 01 - O(1) the horizontal-vorticity 
equations (14a) and (14b) remain valid (with allowed variations for the sine and cosine 
coefficients) while the vertical-vorticity equation now becomes to leading order 

(1) (11) (111) 

The resulting set is usually called the planetary geostrophic or thermocline equations 
in oceanography and have been used to study the thermohaline circulation from both 
theoretical and observational points of view. This large-scale limit is particularly 
interesting for the ocean because the internal Rossby radius of deformation is rather 
small (of order 50 km) and therefore a large range of oceanic scales is permitted, from 
say 200 to 5000 km, under this limit. One must not forget, however, that the small-scale 
turbulent motions of the order of the Rossby radius that are filtered out, contain in 
general most of the relative vorticity and kinetic energy. As has already been mentioned 
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in the introduction, (15) and (4) become singular at low latitudes and a new analysis 
is needed to study the slow dynamics of equatorial flows. In this mid-latitude planetary 
limit, the consistent angular momentum reads 

an expression which only includes the traditional Coriolis terms in the momentum 
equations. 

r = C O S ~  (81, 

3. The low-latitude limit 
It has already been mentioned that observed motions at the equator do not favour 

a particular ordering of the major small parameters of the problem, i.e. global Rossby 
number and aspect ratio S. When 8 becomes sufficiently small, so that sin 8 which is 
O(y), becomes of order ( E ,  S), the scaled vorticity equations (12) show that the various 
terms in the advection of relative vorticity and the stretching-twisting of relative 
vorticity are all equally important. The problem is rendered intrinsically nonlinear and 
it appears very difficult to progress. However, observed flows in low latitudes have a 
very special character: they tend to be oriented rather zonally and be confined in the 
meridional direction, so that the horizontal shear is dominated by the meridional 
variation of the zonal flow. With this anisotropy (a < l), it will be seen that important 
simplifications appear that can be used to advantage. 

Because the zonal relative vorticity fl, involves the vertical derivative of the 
meridional velocity which is O(a) smaller than the zonal one, (12a) shows that both the 
advection and the stretching of the zonal relative vorticity fl ,  are of order a' smaller 
than the other terms. When S 4 1, a: < 1, y < 1 and 8 4 1, (12a) reduces at leading 

(16) 
orders to 

(eg2 + Scos 8) --1+ (€6, + sin e) - - -, ae ar a8 

an equation, therefore, accurate to O(a2,y2a2, $7, y'), with the ratio of the terms 
neglected to the smallest terms kept, themselves of O(e, 8). Of course, to leading order 
(16) implies formally that applat?, which is @I), vanishes. A non-trivial solution needs 
a rescaling of the density which must be O(S,e or y )  smaller than the original mid- 
latitude value. This rescaling is implicit in the discussion that follows. As soon as sin 8, 
which is oi O(y), becomes of order E or S (whichever is larger), equation (16) shows 
that the zonal buoyancy torque on the right-hand side is balanced not only by the 
familiar twisting of the vertical component of the Earth's rotation vector, but also by 
two potentially important additional contributions, the twisting of the horizontal 
component of the Earth's rotation vector by the horizontal shear flow and the twisting 
of the component of the relative vorticity vector in the meridional-vertical plane. 
However, we proceed to show that this second contribution vanishes when a is small. 
With the notation <* = (0, f12, f13), (16) can be compactly rewritten as 

au au, - aP 

( € 5 * + S z * ) . V U  - -. l - ae  
In much the same way, we obtain for the two other directions at leading order 

1 aF 
Dt COS e a# 

D53 €---+ycos8Uz = (€<*+R*).VU,, Dt 

€- Df12 = (€5 *+Sz*).Vu,+-- 

with an accuracy O(a2, Sy, 8'). As such, it appears that nothing much has been gained 
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and that equations (17) still retain far too much complexity. However, (16) and (17a) 
simplify considerably after the important terms in the relative vorticity vector, itself, 
are considered : 

This shows readily that to the same accuracy, O(P,  a’, y2, yS), the non-dimensional 
relative vorticity vector relates to velocity as 

When ( 1 8 )  is introduced into (16), the nonlinear relative vorticity terms cancel out 
remarkably to produce the zonal vorticity equation : 

To leading orders in (a2, S2, y2, yS, ya2), it appears that the buoyancy torque in the 
zonal direction is balanced only by the twisting of the full Earth’s rotation vector by 
the zonal velocity, a most simple physical balance which can be rewritten as 

(9* .V)U1 = - aP 
ae‘ 

This appears to be a uniformly valid approximation over the whole sphere, 
generalizing the zonal component of the mid-latitude thermal wind equations (3), 
under the anisotropy assumption. This assumption is the only restriction because the 
cancellation of the nonlinear terms that has occurred between (16) and (19a) shows 
that the final expression (19a, b) is valid at any order in B ,  provided of course that 
a2s,ey2,eSy be much less than 6 and/or y as shown by (12a). The global Rossby 
number e can therefore be larger than 6 or y in this limit of small a. The value of this 
relation comes from its possible use in the nonlinear regime, a simplicity, however, that 
is not shared with the other vorticity components. Only the zonal vorticity equation 
retains the simple linear form (6a)  of the generalized geostrophic set of the introduction. 
The result demonstrates the importance of keeping the full expression for the Coriolis 
terms in the momentum equations and provides a criterion for the neglect of the 
horizontal component of the Earth’s rotation. At mid-latitudes, 8 is order one, a is 
order one but e is small so that the form of the O*-V operator shows that the effect 
of the horizontal component of the Earth’s rotation can be neglected if 

(tanB)/S 9 1, 

a criterion already quoted by Veronis (1973) from the form of Ertel’s potential 
vorticity. The traditional hydrostatic approximation is well justified for large-scale 
mid-latitude flow when S is much smaller than one. Near the equator, however, B is 
small (6 M 70’) and the above criterion becomes 

(tan 6)/S M @‘/S 9 1, 

where y / 6  = Ha/Li .  
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FIGURE 2. Illustration of possible balances in the zonal vorticity equation: 

(a) Baroclinic production of vorticity due to a north-south density gradient compensated by a zonal 
tilting of the vertical vorticity component 252,. (b) Baroclinic production of vorticity due to a 
north-south density gradient compensated by a zonal tilting of the meridional vorticity component 
252,. Near the equator both balances have equal strength. 

The condition requires the flow to evolve on a scale broader than the natural 
lengthscale which is respectively about 80 km (240 km) given a vertical scale of 
motion H of order 1 km in the ocean (10 km in the atmosphere). The fact that 
considerable energy is found at low latitudes in the form of zonal jets on these lateral 
scales indicates that the traditional approximation should be seriously questioned. 

Relation (19a,b) can be used in a straightforward way. Because it is a first-order 
quasi-linear equation, the zonal velocity u1 can be obtained by integrating the observed 
meridional density gradient along known characteristics which are the straight curves 
parallel to the Earth’s rotation axis. As with the original thermal wind relation, the 
solution is obtained up to an arbitrary constant, values of u1 on an initial curve, 
non-parallel to the rotation axis. Consider for instance, a situation (figure 2) similar to 
what is found in the ocean with cold water at the equator flanked by warm water of 
subtropical origin on either side. In the northern hemisphere this produces a buoyancy 
torque that induces vorticity in the positive eastward direction. Away from the 
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FIGURE 3. Illustration of the equatorial band defined at the base by the cylinder tangent at the equator 
to the solid spherical Earth of radius a and limited at the top by the spherical shell of radius a + If,. 
The angle limiting this region for the ocean is around 4' and the arclength subtended by this angle 
is of order 450 km. 

equator, negative vertical shear of the zonal flow acting on the vertical component of 
51 produces a twisting of the right sign to equilibrate the buoyancy torque. Closer to 
the equator, however, the necessary negative vorticity tendency is presumably carried 
out increasingly by the twisting of the horizontal component of 0 by the negative 
meridional shear of the zonal flow. 

These new dynamics should occur in the region visualized by the intersection of the 
cylinder tangent to the sphere at its bottom (figure 3). The latitudinal extent of this 
region is given by 

cos 0 = a/(a + HB) 

or, as H,/a is small, e = (2HB/a)l/', 

where H B  is the bottom depth. 
In this region, about 2" on each side of the equator for the depth of the ocean and 

about 4" for the depth of the atmospheric troposphere, the new twisting term of the 
horizontal component of the Earth's rotation vector becomes of primary importance 
because the characteristics of (19) are tangent to the spherical surfaces and integration 
proceeds almost with respect to latitude. 

Given u, the meridional and vertical components of the vorticity are now known to 
leading orders from (18). In this case, the meridional and vertical vorticity equations 
(17b) and (17c) become quasi-linear as well for the unknown u, and u,, because the 
small twisting of the zonal vorticity does not appear at leading order in these 
equations. 

They can be rewritten as 

€- -- +ycoseu, = (€<*+51*).VU3, 
:t( 2) 

where c* is the known vector (0, au,/ar, -au,/ae) and D/Dt is the full advection 
operator 
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Therefore, in principle, given a zonal density gradient, the solution of the two 
coupled equations (21a) and (21b) can be obtained by integrating the ‘forcing’ (the 
buoyancy term) along known characteristics that are now the absolute vortex lines (the 
term ec* +a*) in the meridional-vertical plane. The effect of the zonal velocity field u1 
is to shape the absolute vorticity field that allows the remaining velocity component to 
be determined. We believe that this is not the best way to proceed, however, because 
the velocity field must satisfy the continuity equation as well. A more direct approach 
based on the momentum equations that solves this difficulty will be given in $4. 
Kinematically, knowledge of the vorticity field in an incompressible fluid determines 
the velocity field up to a potential flow. Here, the vorticity components c2 and c3 are 
determined from knowledge of u, while the smaller component c1 is still unknown. The 
effect of the anisotropic approximation has been to single out the zonal velocity 
component u1 as the only rotational component. As a consequence, at this order of 
approximation, the velocity components u, and u3 derive from a potential and may be 
easily determined from the continuity equation, taking the term (l/acos 0) (au,/a$) in 
that equation as a known term. This is just the transport in the meridional-vertical 
plane that is necessary to accommodate the divergences and convergences of the zonal 
velocity field (see $4). 

It is both the small aspect ratio and anisotropy of equatorial flows that allows the 
result (19a, b). This discussion should be reminiscent of the oceanic situation that 
prevails at mid-latitudes near a coast. For similar reasons of anisotropy, the velocity 
component along the coast can be determined with geostrophy from the density 
gradient normal to the coast. 

Given the approximated vorticity equations, it is a logical step to try to infer back 
the equivalent momentum equations at the same level of accuracy. The previous 
approximations leading to (19b) and (21 a, b) are local approximations valid at low 
latitudes in the limit of small a. Because these equations encompass the mid-latitude 
geostrophic prescriptions in situations of small e and have therefore global value on the 
sphere, it would be tempting to obtain momentum equations whose curl gives back the 
approximated vorticity equations. Unfortunately the small-a approximation makes a 
selection among nonlinear terms and it is not possible to do that in spherical 
coordinates because unavoidably spurious metric type terms of O(y) are generated. For 
this reason, we present the local momentum equations valid at the equator to leading 
order in y, i.e. on the equatorial ,&plane. This involves the following expansions: 

(22) x = a$, y = a0, z = ( r -a) ,  

where the Cartesian coordinates x, y and z now replace the spherical $, 0 and r 
respectively. 

I sin 0 = yy + O(y3), cos 0 = 1 + O(y2), 

Under such conditions, the appropriate momentum equations are 

€--yyu2+Su3 Du, =-P,, 
Dt 

y y  u1 = -py, 
--Su, = - P,-p ,  

(23 b) 
(23 c)  

If the curl (in Cartesian coordinates) of (23) is taken, one recovers exactly the 
vorticity equations (19b), (21a,b) once the approximations (22) have been made in 
those equations. Full compatibility is therefore ensured at O(y) between the two sets, 

where DIDt = a/at + U, alax + u2 a/ay + u3 a p z .  
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the relative vorticity vector in the new Cartesian coordinates being (0, au,/az, - au,/ay), 
a form that also preserves the solenoidality condition for vorticity. 

To the same order of approximation, the angular momentum (13) ,  satisfying its 
conservation principle, can be rewritten as 

I' = 1 - y2Y2 + 26yr' + 2 ~ y u ,  

(1) (11) (111) 
or in dimensional form as 

Qa2( 1 - 02) + 252a(r - a) + au,. 

Equation (24) shows that the radially varying term (11) has to be kept compared to the 
latitudinal-dependent term (I) as long as 2S/y is of order one. This result can be 
understood when looking at the geometry of the equatorial region. In such an 
equatorial band, because the horizontal plane aligns with the Earth's rotation axis, the 
latitudinal change of planetary angular momentum in moving a fluid particle over a 
distance L becomes weak and approaches the magnitude of its radial change caused by 
the displacement of the particle over a depth H .  That proscribes, therefore, the vertical 
displacement over those scales to be freed from the planetary rotational constraint. 

It is perhaps useful to rewrite the above set in dimensional form: 

pz 

Dt Po 
-- Dul pyu,+2Qu, = --, 

P 

Po 
p y u  z-2 

1 

We emphasize that this set is appropriate to discuss low-frequency finite-amplitude 
equatorial flows in the limit of small meridional scales and long zonal scales, thereby 
excluding zonal boundary regions. All Coriolis terms involved with the horizontal 
component of the Earth's rotation must be kept, not only for consistency with the 
vorticity analysis but also for consistency with energy considerations. The appropriate 
energy equation is obtained by multiplying scalarly (23) by the velocity field, leading 
to 

Comparing (23) with the linear set ( 5 )  mentioned in the introduction, we see that the 
zonal acceleration term must be included. Equatorial dynamics are frequently studied 
by taking advantage of the hydrostatic approximation. However, the elimination of the 
velocity between (23e) and (23 f) shows that 

an expression which can be rewritten as 

dP/ds = -gpO, (23 g) 

where s is a coordinate along the true Earth's rotation vector. The correct relation 
between pressure and density (23g) relates pressure variations along the rotation axis 
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to the projection of the buoyancy vector onto that axis. This reduces to the statement 
of hydrostatic pressure for precisely the same condition found previously, i.e. when 
flows are broader than the horizontal scale 

4. A generalization of the geostrophic method 
The vorticity equation is a differentiated by-product of the momentum equations. 

Determination of velocity from density therefore requires an integration assuming as 
initial data a known velocity somewhere (a method currently used in ocean studies to 
infer the velocity field from observed density data, i.e. the integration of the thermal 
wind equations). An alternative way makes use of the pressure field, obtained either 
from hydrostatic dynamics or from observations in meteorology, to deduce the velocity 
field in applying geostrophic relations. These two methods use either the simplified 
equation (3) or the simplified set (1) or (2) which are mutually consistent at 
mid-latitudes but not in the vicinity of the equator. While the preceding sections dealt 
with the validity of the approximations for mid- and low-latitudes, the following 
extends formally these results in the limit of low-frequency motions using the full 
momentum equations. We show how to recover the previous results from a very 
general vectorial relationship that relates velocity to density up to an arbitrary constant 
of integration. The formula is then tailored to a spherical geometry and exploited in 
mid- and low-latitude regions to discuss the hydrostatic pressure hypothesis currently 
made in the study of large-scale geophysical flows. 

Because both the velocity and vorticity vectors have no divergence, the vorticity 
equation (10) can be rewritten as 

v x  
Po 

where 5, = < + 2 0  is the absolute vorticity. A vector of zero curl being the gradient of 
a scalar potential x, it is possible to write 

-+<, aU xu-g- P = -VX, 
at Po 

where x is none other than the dynamic pressure (p /p ,+ i l~1~) .  
Of course x is unknown so that it is not obvious that the momentum formulation will 

be useful. If we find a way to determine x and if some useful insight helps to determine 
the absolute vorticity field, the steady version of (26) shows that the computation of u 
amounts to a simple evaluation. Quite remarkably, the relation derived below does just 
this. Suppose indeed that the flow that is sought is either steady, or has a frequency w 
much lower than 252 (assumed to be an appropriate measure of the absolute vorticity 
amplitude). Projecting (26) onto the absolute vorticity vector 5, gives 

In this expression valid to O(w/252), the velocity field has been eliminated and the 
dynamic pressure x may therefore be obtained from the density field if the absolute 
vorticity vector is known. When this is the case, (27) becomes 
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or - _  dX - p g  cos a, 
ds Po 

where s designates the curvilinear coordinate along absolute vortex lines and a is the 
angle between the gravity vector g and the absolute vorticity vector <,. It is then a 
simple integration along characteristics (the absolute vortex lines) to obtain x up to a 
constant xo  given at some initial position so. After x is determined, the low-frequency 
version of (26) becomes simply 

Equations (28) and (29) can be viewed as a set of ‘generalized’ hydrostatic and 
geostrophic relations. 

With the low-frequency approximation, u can be obtained everywhere from (29) if 
the initializing function xo is known and if the forcing vector on the right-hand side is 
not parallel to 5,. Of course this is purely formal at this stage because the absolute 
vorticity vector is not known in general and depends itself on the unknown velocities. 
Furthermore the potential x can be obtained from the density field only if the angle 
a between the gravity vector and the absolute vorticity vector is accurately known. 
Progress can be made if further assumptions are made about the shape of the absolute 
vortex lines. 

The scaling analysis presented previously for slow predominantly zonal flows at low 
latitudes corresponds to the choice of an absolute vorticity vector in the meridional, 
vertical plane only : 

It has been shown in $3 how to determine u1 from meridional density gradients up to 
an integration constant but we are now in a better position to discuss more fully the 
dynamics in the meridional-vertical plane. The determination of the flow in that plane 
may be carried out as follows. First decompose the velocity vector u” = (uz,u3) as 

u” = V ’ V + i x  Of@, 

where 

The continuity equation provides a two-dimensional Poisson’s equation for V which 
can be solved given boundary conditions on V :  

Furthermore since the absolute vortex lines are known, the distribution of dynamic 
pressure x can be obtained by integrating equation (28) along a known characteristic, 
introducing a second integration constant. Finally when x is known, the zonal 
momentum equation provides an equation for 9: 

The stream function 11. that recirculates fluid in the meridional-vertical plane is 
simply obtained by integrating once more the ‘forcing’ on the right-hand side of (31) 



250 A .  Colin de Verdi2re and R.  Schopp 

along the absolute vortex lines, a calculation that involves a third constant of 
integration. With the addition of the boundary conditions on V,  the determination of 
ul, u,, u3 and x from the density field requires four initial conditions for those same 
variables along some initial curve, the only restriction to be placed on that curve being 
that it can never be parallel to the Earth’s rotation axis (for u,) or to the absolute vortex 
lines (for the other variables). The obvious choice is that this curve be the equator itself. 
Given observations of all dynamic variables at the equator and of density in the 
interior, equations (19a), (28), (30) and (31) allow at least in principle a reduction of 
the determination of the velocity and pressure fields to four quadratures. We may 
expect that application of this procedure might be carried out iteratively: once the 
velocities are determined, an improved absolute vorticity field can be computed and the 
whole procedure started over again until convergence. 

This general formulation complements the analysis of 0 3 about the conditions of 
validity of the traditional hydrostatic approximation for the mid- and for the low- 
latitudes cases respectively. Before doing so, we need to rewrite the low-frequency limit 
of (26) in component form: 

(5, + 252cos 8) u3 - (5, + 252 sin 0) u2 = 1 ax 
rcos ea$ ’ 

1 ax (~,+252sin0)u1-~,u3 = ---, 
r ae 
ax gP 5, u, - (6, + 252 cos 0) u, = - - - - . 
ar Po 

(i) The hydrostatic approximation in the linear limit 
In the linear limit of infinitesimal amplitudes the absolute vorticity reduces to that 

of the Earth’s component and the variations of dynamic pressure to those of static 
pressure, so that (28) and (29) become 

1 d P  p 
K Z -  Po 

- --gsin13, 

Po 

(33 a) 

(33 b) 

where 8 is the latitude and so is the free surface where the pressure is assumed to be the 
constant atmospheric pressure. But dP/ds is also (cos 0 / r )  (aP/a8) + sin BaP/ar so that 
(33 a) becomes 

The above expression reduces to the familiar statement of hydrostatics when the first 
term on the left-hand side of (33 c) is negligible. The necessary condition, H / L  tan 0 
much smaller than one, is a local condition and does not ensure hydrostatics combined 
with geostrophy to be valid over all the vertical scale H .  To be so, one has to integrate 
the pressure along the Earth’s rotation axis (see figure 4a) and show that the error 
induced by replacing 

-g sin 0 ds 
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FIGURE 4. (a) Evaluation of the latitudinal extend A = 0,-0, of a fluid column parallel to the 
rotation axis : the length BC is given by H cos (0,)/sin (0, -$A) and also by 2R sin ($A), leading to the 
geometrical relation (34). For hydrostatic balance to be valid, typical lengthscales L have to be greater 
than aA. (b) Equatorial cases : 0, = 0 = A, Oa = 0. Solid lines : hydrostatic relation valid over the full 
depth H of the ocean; dashed lines: hydrostatic relation valid only in the upper part of the ocean (see 
text). 

with 

in (33b) be small. This error in (33b) is small as long as the horizontal lengthscale L 
is much larger then the length ah of the arc subtended by the angle A = 8,(s,)-B,(s) 
which is given geometrically by 

~ c o s  (6,) 
sin ($A) sin (6, -$A) = 

2a ' (34) 

a being the Earth's radius (see figure 4a) .  
At mid-latitudes, since H / a  is very small, h is small and very close to being H / a  tan 6. 

The condition L larger than ah reduces then to the local condition ( H / L  tan B < 1)  with 
the angle 6 effectively constant in (33a) and thus in (33c) over the full domain along 
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the rotation axis. The local condition is sufficient to ensure hydrostatic balance for 
shallow fluids like the ocean or the atmosphere. 

This demonstration shows that the hydrostatic relationship is valid to O ( H / L  tan 8) 
and therefore can be used over a large range of scales. The result defines what is meant 
by mid-latitudes under geostrophic dynamics. 

From the angular-momentum viewpoint, hydrostatics is valid if variations of r with 
radial distance (i.e. the vertical-velocity-related Coriolis term) are small compared to 
variations with latitude (i.e. the traditional Coriolis terms). In comparing term (11) to 
variations of term (I) in (13) ,  the condition s/tan(B) < 1 is recovered. Angular 
momentum can therefore be kept constant radially over the full depth of the fluid when 
moving particles over a distance L. By displacing the fluid over a depth H, the 
rotational constraint is not felt and only the gravity force and the vertical pressure 
gradient are experienced. This is precisely the condition that was found in $ 3  to neglect 
the Coriolis terms associated with the horizontal component of the Earth’s rotation. 

However, within a narrow band of latitudes centred around the equator, the 
statement of hydrostatic pressures leads to a much more restrictive condition. When 8 
becomes small, the local approximation L % H/aB gets increasingly worse because the 
segment AB spans a much larger range of latitudes and because the correct integration 
of the density field along AB in (33b) may then produce a pressure field sizeably 
different from the one obtained after a vertical integration. In this case (see figure 4b) ,  
8, being zero, the angle h is of the same order as 8, and is obtained from (34) by 
replacing 8, by h so that h % (2H/a)’/2.  The condition L larger than ah, to ensure that 
hydrostatic-geostrophic dynamics is valid over the depth H, becomes L 9 (2Ha)’I2. 
This same condition is also obtained in considering term (11), in the angular 
momentum (24)’ to be smaller than term (I). Only in this case, do the classical 
hydrostatic-geostrophic relationships apply at the equator. They are valid over all the 
depth of the ocean if typical lengthscales of the motion are much greater than the 
arclength ah defined by the equatorial band shown in figure 4(b) .  For scales smaller 
than (2Ha)’”, new effects come from the neglected vertical Coriolis acceleration that 
plays a central role at the equator in imparting rigidity to fluid columns parallel to the 
Earth’s rotation and not to the gravity axis. In other words, when the advection terms 
can be neglected, the thermal wind equations need to be applied to velocity 
components in the plane perpendicular to the rotation axis and not that perpendicular 
to gravity. At the angular-momentum level, the meridional distance, over which 
latitudinal variations of r become large, increases when approaching the equator, its 
radial variations can no longer be neglected if smaller lengthscales are considered. 
These results are in accordance with the vorticity viewpoint developed in the preceding 
chapters. Nevertheless, note that the traditional set is still valid over a finite depth in 
the upper part of the equatorial region. When 8 or h get small (figure 4b) ,  hydrostatic 
balance can still be used over smaller horizontal scales when applied in the upper part 
of the ocean over a depth range H provided 

H < L2/2a.  

(ii) The hydrostatic approximation in the jinite-amplitude regime 
Consider now the case of finite-amplitude flows at small but non-zero Rossby 

number. Again x can be approximated by P at leading order. It is not difficult to show 
that (28) can be transformed to an expression similar to (33a) in which the latitude 8 
has to be replaced by the angle between the absolute vorticity vector and the horizontal 
plane. Henceforth provided that angle does not become small, the condition of small 
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aspect ratio ensures local hydrostatics. At mid-latitudes the small-Rossby-number 
condition guarantees that the absolute vortex lines make a finite angle with the 
horizontal plane because the vertical vorticity is dominated by that of the Earth. The 
situation is nearly the opposite at low latitudes where the Earth’s vorticity becomes 
tangent to the Earth‘s surface. Therefore, for the hydrostatic equilibrium to exist in the 
limit of small aspect ratio, the flow must be strong enough to reorient the absolute 
vortex lines away from the horizontal plane. As shown in the next section, the relative 
vorticity can easily turn the absolute vorticity vector in almost any direction in these 
regions. However, in the particular case of finite amplitude but anisotropic flow we 
have seen in 9 3 that the relation between pressure and density reduces to (33 a) so that 
the above linear analysis is valid. In the more general case, expanding (28) gives 

where s,, s, and s3 are the components of the unit vector parallel to the absolute 
vorticity. It is clear that the last term vanishes if 

6 < (s3/s,, s3/s1a>. 

If we can construct flow solutions where the absolute vorticity vector does not make 
a small angle with the horizontal plane then the following generalized statement of 
hydrostatics will be valid at order 6: 

- ax = --g. P 
ar Po 

Because it appears difficult to construct equatorial solutions where this condition is not 
violated at least somewhere in the flow and because it is highly desirable to use 
dynamical equations that span the whole range of flow amplitudes, we advise that the 
full Coriolis term be retained in the vicinity of the equator unless one has strong reason 
to believe that the flow evolves on lateral scales broader than (Ha)’”. 

5. Equatorial jet 
To conclude: we consider in this paragraph some special simple solutions in the 

equatorial region that may serve to illustrate some of the points made earlier. Let us 
look at the idealized situation of zonally homogeneous flows, when the density and 
pressure fields are independent of longitude. This case may perhaps be encountered 
both in the atmosphere and ocean away from boundary effects at low latitudes. Flows 
in the meridional-vertical plane must satisfy the zonal momentum equation (32a) that 
reduces to 

t z a  ~3 - t 3 a  uz = 0. (35) 

The trivial way to satisfy (35) is to have no flow in the meridional-vertical plane. In 
this purely zonal jet it is easy to show that the two other momentum equations, (32b) 
and (32c), can be combined to give 

P P  2 f l - v -  = -g.252. 
Po Po 

Although the relative vorticity of the jet can be of arbitrary amplitude, the relation 
between the pressure and density is linear, in complete agreement with the result (23g) 

9 F L M  276 
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FIGURE 5. Lines of constant angular momentum Q[rcos (@I2 in the equatorial region in the case when 
the zonal velocity vanishes. These lines are just parallel to the rotation axis. The inset sketches the way 
these lines are deformed when Cartesian coordinates are used. 

of $3. If the zonal velocity is given, then the vorticity equation (19) allows one to 
compute the density field and (36) gives the pressure field. As a consequence precisely 
the same horizontal scale (Ha)liZ marks the transition between a hydrostatic jet and a 
non-hydrostatic jet. 

However, flows in the meridional-vertical plane are not forbidden provided that 
absolute vortex lines and streamlines are parallel. Because the velocities and vorticities 
are non-divergent in that plane, stream functions exist for both fields and must coincide 
according to (35). The flows governed by (35) are free steady and of arbitrary 
amplitude. Of course they must satisfy the boundary condition that the flow be tangent 
to surfaces containing the fluid. When these are spherical, u3 must vanish and we obtain 
the boundary condition 

'&a '2 = O' 

Free meridional flow along the boundaries (u, + 0) is allowed provided that the 
absolute vortex lines are sufficiently deformed by the zonal flow to become tangent to 
the surface of the sphere, i.e. E3a = 0. Just at the equator, no relative vertical vorticity 
is needed to accomplish this since the Earth's rotation vector is already tangent to the 
sphere. On the other hand. when the absolute vortex lines intersect the bounding 
surfaces no meridional flow is possible along the boundary. 

Equation (35) has an integral form which can be simply obtained from the angular 
momentum principle (8). Since r = SZr2 cos' (0) + u1 r cos (0) is conserved along 
streamlines in the meridional plane when no zonal pressure gradient is present, vortex 
lines and streamlines in the meridional-vertical plane are also constant-r lines and can, 
therefore, be computed solely from knowledge of the zonal velocity. When u1 = 0 
(figure 5) ,  the constant-r lines are parallel to the rotation axis, but become curved in 
Cartesian coordinates. Figure 6 shows the situation of an equatorial eastward zonal jet, 
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FIGURE 6. (a) The constant-angular-momentum lines (solid contours) in the meridional-vertical 
plane, between 0 and 1000 m depth, are pictured for the case of an oceanic eastward zonal jet centred 
at the equator. The jet normal to the plane (dashed lines: constant-zonal-velocity lines) has maximum 
speeds of 0.5 m s-' around 300 m and e-folds over 1" in latitude and 100 m in the vertical. With such 
shears, well into the geophysical range, the relative vorticity can exceed and turn around the Earth's 
vorticity. When the absolute vortex lines are closed in the vicinity of the jet a steady inertial flow 
parallel to these solid contours is a solution of the equation of motion. (b) The trajectory of the fluid 
parcels are helices with generators parallel to the equator, winding themselves around the jet. 

mimicking an oceanic situation, along with the associated constant-r lines or absolute 
vortex lines. The figure demonstrates that typical shears of observed equatorial jets can 
easily create absolute vorticity opposite to the Earth's vorticity 2D. Near the equator 
this requires vertical shears of horizontal flow U / H  to approach 252 or about 10 cm 
s-l(l m s-l) over 700 m for the ocean (7000 m for the atmosphere). From the angular- 
momentum viewpoint, this means that contributions from relative flows (term (111) in 

9-2 



256 A .  Colin de Verdiere and R .  Schopp 

Latitude (deg.) 

(b) 

FIGURE 7. (a) Same as figure 6(a), but for a westward jet. One can observe a tightening of the lines 
outside the jet and a closing of contours underneath the jet region. (b)  Superposed opposite jets with 
equal strength (eastward jet over westward jet): fewer contours are closed inside the westward jet 
since a negative zonal velocity weakens the planetary angular momentum. 
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(24)) are of the order of the radially dependent component (term I1 in (24)). Because 
such values are in the geophysical observed range, one may expect this situation of 
‘north to south’ absolute vorticity to be rather common. In the vicinity of a jet, the 
absolute vortex lines close on themselves and free steady inertial Jows of arbitrary 
amplitude in the meridional-vertical plane are possible if they are everywhere tangent 
to the absolute vortex lines. As one moves away from the jet, the simple Earth’s 
rotation direction is recovered since u1 tends to zero. In such flows, the three- 
dimensional trajectories of fluid particles are helices with generators parallel to the 
Equator. Figure 7 mimics now a westward jet. In contrast to the eastward case fewer 
contours are closed, negative velocities being able to weaken the magnitude of angular 
momentum. The reverse is true underneath and above the jet region. As one moves 
away from the equator, the latitudinal dependent term in the angular momentum 
becomes the dominant term and constant-r lines become parallel to the rotation axis 
as illustrated in figure 8. It is therefore much more difficult to observe the above flow 
solutions when the jet axis lies a small distance off the equator. 

Because the whole flow solution is independent of longitude, the exact relation (28) 
shows that after a circuit in the meridional-vertical plane, the dynamic pressure must 
return to the same value. An integration of (28) in a situation of closed contours 
requires 

fgEcos(a)ds = 0. 

This integral is simply the circulation of the vector pg along a closed curve. In such 
a quasi-steady situation, the integrated work of the gravity force must vanish to 
prevent changes in the circulation of the velocity field itself. Under adiabatic 
conditions, the density is also constant along a fluid trajectory and when this is the case, 
the above integral reduces to the circulation of g and is therefore zero (since g derives 
from a potential). 

An investigation of the stability character of such angular momentum and density 
stratification has not been undertaken in this paper. Nevertheless one possible outcome 
in a situation of small turbulent mixing could be the following. When the angular 
momentum contours are closed, such inertial circulations are compatible with static 
stability of density, in the hydrostatic sense, only if the density is homogeneous inside 
the closed regions. Nevertheless, should the Coriolis force or inertial terms in the 
vertical be taken into account, vertical positive shearing motions are capable of 
reversing density gradients without losing their stable character, heavier fluid being 
expelled through ,those ‘centrifugal ’ accelerations to shallower levels overlaying 
lighter fluid. 

The zonal-homogeneity assumption implies bidimensionality of the flow in the 
meridional-vertical plane since the velocity u, normal to that plane depends only on 
coordinates in that plane. As a result, if @ designates the stream function, the steady 
tracer equation for density, assuming Fickian turbulent mixing of intensity K, is 

J(@, p) = f l ’ 2 p ,  

where J is the appropriate two-dimensional Jacobian. When the flow is quasi- 
conservative so that the Peclet number U L / K  is large, the situation for the tracer is 
similar to that for vorticity with closed streamlines in two dimensions. Batchelor’s 
(1956) theorem states that at high Reynolds number, the vorticity must homogenize 
inside closed streamlines. This prediction implies, here, homogenization of density (or 
other tracers) inside the closed orbits. Such free quasi-conservative flows have zero 
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Latitude (deg.) 

FIGURE 8. Same as figure 6(a), but with a latitudinal 1" shift (a) of the eastward-moving jet and (b) 
of the westward jet. Closed contours disappear rapidly while moving a westward jet to higher 
latitudes. 
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Ertel potential vorticity since the vectors 5, and V p  are perpendicular in this situation. 
Under these special zonally homogeneous dynamics, a look at the density distribution 
in the fluid could well give indications of the absolute vortex lines or constant angular 
momentum lines and therefore of possible free paths for fluid exchanges across the 
equator without breaking any rotational constraints. 

6. Summary 
Within the context of the atmosphere, previous studies have discussed ‘balanced 

dynamics’ in the tropics but all of them rest on the a priori choice of hydrostatic 
balance in the vertical whose main purpose in meteorological models is to filter out 
acoustic waves. Instead, it is shown here that a better description of the zonal flow can 
be obtained if the hydrostatic approximation is abandoned. The relation (19), which 
is now free from singularities at the equator, relates the buoyancy torque in the zonal 
direction to the twisting effects of the full Earth’s rotation vector by the zonal flow. The 
transition from such equatorial dynamics to classical mid-latitude geostrophy depends 
upon the value of the parameter tan O/S (6 being the ratio of vertical over horizontal 
scale). At mid-latitudes it is large and the traditional approximation of neglecting the 
Coriolis force associated with the horizontal component of the Earth’s rotation can be 
made so that the pressure is hydrostatic. Near the equator this approximation requires 
the flow to evolve on scales larger than (Ha)l/’. When shear is found in oceans or 
atmospheres on such scales, the present analysis definitely suggests that the traditional 
approximation and the hydrostatic assumption should be abandoned. Instead the mid- 
latitude thermal wind is replaced in such regions by a vorticity equilibrium in the zonal 
direction between the buoyancy torque and the twisting effect on the full Earth’s 
vorticity, a relation that is valid at finite amplitude provided the speed of the zonal flow 
is much larger than the meridional one. When the density field is integrated along the 
Earth’s rotation axis, the zonal flow is obtained up to an arbitrary constant in a manner 
reminiscent of current practice at mid-latitudes. What is particularly important is that 
the zonal flow sets the absolute vorticity field to leading order. At the momentum level, 
this means that all Coriolis terms in the meridional and vertical equations must be kept 
although some of the nonlinear advection terms can be left out. The low-latitude and 
mid-latitude approximations have been shown to stem from a rather general result (28) 
and (29) of the steady Euler equation that allows the velocity field to be formally 
computed provided the density and absolute vorticity field are known. Using this 
result, given an initialization of all flow variables at the equator, it is possible at least 
in principle to compute the values of these variables in the interior solely from 
observations of the density field and initial guesses for the vorticity. 

At sufficient distances from solid boundaries, if the zonal flow becomes independent 
of longitude, the possible existence of steady inertial closed loops in the mer- 
idional-vertical plane has been investigated. This recirculation of fluid around 
equatorial jets is possible if the jet is strong enough to create closed contours of 
absolute vorticity. Streamlines in this meridional recirculation plane have been simply 
inferred from the use of the angular-momentum conservation principle (8). The 
number U/252H (= e/6) must then reach at least order one, a situation that is rather 
common in geophysical flows. 

In an oceanic context the relations (23b) and (23 c) have been used experimentally 
by Joyce, Lukas & Firing (1988) to derive the transport of the equatorial undercurrent 
in the Central Pacific from hydrographic data and shown by these authors to improve 
the comparison between inferred and observed velocities. Given the broad conditions 
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under which it is valid in the tropics, this relation should be further tested 
experimentally in both oceans and atmospheres. The latter case is specially appropriate 
because independent observations of zonal velocity and temperature are routine, 
making a test of the equatorial thermal wind equation possible. Below the tropopause 
the equatorward temperature gradient (along pressure surfaces) induces a negative 
zonal buoyancy torque in the Northern hemisphere. This is normally equilibrated by 
the positive vorticity tendency caused at mid-latitudes by the twisting of the vertical 
component of the Earth’s rotation vector by the westerlies increasing aloft. Closer to 
the equator, equation (19) suggests an alternative due to the horizontal shear of the 
zonal wind acting on the horizontal component of the Earth’s rotation: trade winds 
speeding up at lower latitudes can create just the right effect. 

The help of Christine GuCrenne, Sandrine Le Magoarou and Pierre DoarC in the 
preparation of the manuscript is gratefully acknowledged. 
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